منابع مشابه
Stochastic Non-Parametric Frontier Analysis
In this paper we develop an approach that synthesizes the best features of the two main methods in the estimation of production efficiency. Specically, our approach first allows for statistical noise, similar to Stochastic frontier analysis, and second, it allows modeling multiple-inputs-multiple-outputs technologies without imposing parametric assumptions on production relationship, similar to...
متن کاملParametric and nonparametric models and methods in financial econometrics
In this paper we review parametric and nonparametric models and methods widely used in financial econometrics.
متن کاملParametric versus non-parametric simulation
Most of ex-ante impact assessment policy models have been based on a parametric approach. We develop a novel non-parametric approach, called Inverse DEA. We use non parametric efficiency analysis for determining the farm’s technology and behaviour. Then, we compare the parametric approach and the Inverse DEA models to a known data generating process. We use a bio-economic model as a data genera...
متن کاملQuantitative Data – Parametric & Non-parametric Tests
Assumption for 1 sample T test: Data are normally distributed. We have discussed in the last article on how to check the normality assumption of a quantitative data. One issue being highlighted was that these formal normality tests are very sensitive to the sample size of the variable concerned. As seen here, table II shows that the normality assumptions for both the systolic and diastolic bloo...
متن کاملParametric vs Non - Parametric Generative Models
The contrast is exemplified by the following classification task. Let’s assume that we are given data, X , i.e. the observed variable and we want to determine its class label, Y, the unobserved (target) variable. A generative classifier, such as Naive Bayes, makes use of the joint distribution of X and Y, i.e. P(X ,Y) to perform this inference. While a discriminative classifier, such as a Logis...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of Applied Statistics
سال: 2011
ISSN: 0266-4763,1360-0532
DOI: 10.1080/02664763.2011.575999